Lyman-alpha emitting galaxies at high redshift

Semi-analytic modelling

Thibault Garel (Swinburne)

Jérémy Blaizot, Bruno Guiderdoni, Daniel Schaerer, Anne Verhamme & Matthew Hayes

Super Science Symposium - Hobart

OUTLINE

- Introduction : theory and observations
- Role of radiative transfer
- Modelling of Lyα galaxies (Garel+12a, MNRAS; Garel+12b, in prep)
 - Semi-analytic model of galaxy formation
 - Model of Ly α emission

OUTLINE

- Introduction : theory and observations
- Role of radiative transfer

- Modelling of Lyα galaxies (Garel+12a, MNRAS; Garel+12b, in prep)

- Semi-analytic model of galaxy formation
- Model of Ly α emission

Lyman-alpha (Ly α) emission from HII regions

Super Science Symposium - Hobart

Recombination of HII regions

- Probability(Ly α =1216 A) \approx 2/3 per recombination

Intrinsic Ly α luminosity

$${f L}_{{
m Ly}lpha}^{
m intr} \propto {2 \over 3} \dot{{\cal N}}_{
m ion}^{
m OB} \propto {
m SFR}$$

- Intense line in star-forming galaxies

$$\mathbf{L}_{\mathrm{Ly}lpha}^{\mathrm{intr}} pprox 10\% \mathbf{L}_{\mathrm{bol}}$$

- Easy to detect at high redshift !

$\mbox{Ly}\alpha$ in the observational context

Lyα selected galaxies = Lyman-Alpha Emitters (LAE)

- Narrow band vs Broad band (Ouchi+08;Hu+10)
 => LAE candidate if EW_{Lyα} > EW_{threshold}
- Blind search with slit or IFU (e.g. Rauch+08, Blanc+10)

 λ_{obs} = (1+z) x $\lambda_{Ly\alpha}$: seen in optical-NIR at 3 < z < 7

Large samples (>3000) of LAEs at 3 < z < 7 (e.g. Subaru, VLT) allow to derive statistical constraints on LAEs

$\mbox{Ly}\alpha$ in the observational context

Lyα selected galaxies = Lyman-Alpha Emitters (LAE)

- Narrow band vs Broad band (Ouchi+08;Hu+10)
 => LAE candidate if EW_{Lyα} > EW_{threshold}
- Blind search with slit or IFU (e.g. Rauch+08, Blanc+10)

 λ_{obs} = (1+z) x $\lambda_{Ly\alpha}$ ~ : seen in optical-NIR at 3 < z < 7 $\,$

Large samples (>3000) of LAEs at 3 < z < 7 (e.g. Subaru, VLT) allow to derive statistical constraints on LAEs

Ly α in the observational context

Lya Luminosity Function

- evolution with 7? Variation of ISM or IGM absorption?
- faint end slope ? Contribution of faint galaxies to SF budget?

log $L_{Ly\alpha}$

<u>Mean physical properties of LAEs</u>

- stellar mass:
- dust extinction: $\langle A_{V} \rangle \approx 0.1$

 $< M_{star} > \approx 5.10^8 M_{sun}$

- age of stellar pop. <Age_{stars}> \approx 200 Myr

e.g. Gawiser+06; Finkelstein+07

Ly α in the observational context

UV selected = Lyman-Break Galaxies (LBG, Steidel+99, Bouwens+07)

- UV-continuum magnitude M_{UV} selection
 (= highly star-forming galaxies)
- LBG seem more massive, more dusty and older than LAE
- Spectroscopic follow-up "sometimes" shows Lyα ! (e.g. Shapley+03, Stark+10)

We want to understand the properties of $Ly\alpha$ Emitters, but also their link with the Lyman-Break Galaxies

OUTLINE

- Introduction : theory and observations

- Role of radiative transfer

- Modelling of Lyα galaxies (Garel+12a, MNRAS; Garel+12b, in prep)

- Semi-analytic model of galaxy formation
- Model of Ly α emission

Lya photons travel through the ISM : $N_{H}(ISM) \approx 10^{20} \text{ cm}^{-2}$

Lya scattering cross section is huge: $\sigma_{Lya} \approx 10^{-16} \text{ cm}^2$

 \square Medium optically thick to Ly α photons: resonant scattering

Lya photons travel through the ISM : $N_{H}(ISM) \approx 10^{20} \text{ cm}^{-2}$

Lya scattering cross section is huge: $\sigma_{Lya} \approx 10^{-16} \text{ cm}^2$

Medium optically thick to Lyα photons: resonant scattering

- This is actually observed
- Path(Lyα) greatly increased

=> Enhancement of dust extinction

Escape fraction of Ly α photons f_{esc} hard to infer or predict !

$${f L}_{{
m Ly}lpha}^{
m obs}={f f}_{
m esc}{f L}_{{
m Ly}lpha}^{
m intr}$$

19-04-2012

Super Science Symposium – Hobart

y t = y

- Galactic outflows seem to be quite common at high redshift

(e.g. Shapley+03, McLinden+10)

Steidel+10

2.6

2.4

2

Redshift ເດ ເດ

Model of Lyα transfer through spherical expanding shell has been proposed (Verhamme+06, Dijkstra+06)

19-04-2012

Super Science Symposium – Hobart

16

Model of Lyα transfer through spherical expanding shell has been proposed (Verhamme+06, Dijkstra+06)

17

MCLya: Numerical radiative transfer code

(Verhamme+06)

- Central isotropic emission of $Ly\alpha$ photons
- Solves resonant scattering in expanding shell (gas + dust)

Backscattering redshifts Lya photons

Super Science Symposium – Hobart

Lya photons escape mainly through backscattering

- Extension of MCLya by Schaerer+11: Library of 6000 models

i.e. 6000 sets of shell parameter values V_{exp} , N_{H} , b , τ_{dust}

OUTLINE

- Introduction : theory and observations
- Role of radiative transfer

- Modelling of Lyx galaxies: apply/test "shell picture" in cosmological model of galaxy formation

- Semi-analytic model of galaxy formation
- Model of Ly α emission

Semi-analytic model of galaxy formation

GALICS

(GALaxies In Cosmological Simulations, Hatton+03)

Coupling of:

- N-body simulation to describe the evolution of structures of dark matter in a cosmological volume

- Semi-analytic prescriptions to model galaxies

Cosmological N-body simulation

- Follow dynamics of dark matter particles in cosmological box

1- find halos = "bound groups" of > 20 particles2- Track growth of halos = merging history

Add baryons to DM halos in post-processing to model galaxies

Semi-analytic models for galaxies

- Compute complex galaxy physics...

- Gas accretion
- Star formation
- SN Feedback
- Galactic fountain
- ISM chemical enrichment
- Mergers...

... with simple analytic recipes: e.g. star formation (Kennicutt law)

$$log\Sigma_{SFR} = 1.4 log\Sigma_{gas} + \alpha_{SF}$$

UV luminosity functions of LBGs

- GALICS predicts properties of > 1 million galaxies at high z. SFR, gas & stellar mass, dust... + UV-continuum magnitude

Use "MCLya shell" model for GALICS

Shell parameters derived for each galaxy using scaling arguments

$$V_{exp} \sim SFR^{1/6}$$
SNII analytic model by Bertone+05 $N_H \sim M_{ISM}$ / 4 πR_{disc}^2 $T_{dust} \sim Z_{metal} N_H (1+z)^{-1/2}$ Guiderdoni+87, Reddy+06b = 20 km/sT $\approx 10^4$ K

 \rightarrow Ly α properties (f_{esc}, profile) from MCLya library

Ly α escape fraction

 10^{2}

f_{esc} distribution vs SFR

- Low SFR galaxies $f_{esc} \approx 1$ $Ly\alpha$ can trace SFR - High SFR galaxies $\int_{0}^{29} 10^{1}$ $\int_{0}^{10^{1}}$ $\int_$
 - $0 < f_{esc} < 1$ Ly α uncorrelated with SFR

 $\begin{bmatrix}
 0^{-1} \\
 0^{-2} \\
 -3 \\
 -3 \\
 -2 \\
 -3
 -2 \\
 log f_{esc}$

0

$Ly\alpha$ luminosity functions

- Asymetric shape well reproduced

- FWHM_{model} slightly higher than FWHM_{obs}

Stellar masses of LAEs

Link LAE-LBG

Fraction of Ly α emitters in LBG

0.6 Data: Stark+10 - Observations show that 0.5 z≈4 fraction X_{Lya} increases at 0.4 z≈6 fainter M_{UV} (points + bars) ×, 0.3 0.2 - Model catches this trend 0.1 (histograms) 0.0 => LAE-LBG picture seems -20 -19-21 coherent ! MUV

-22

Link LAE-LBG

Less dusty UV-bright galaxies can appear as LAE

Super Science Symposium - Hobart

Conclusion

– Inclusion of resonant Ly α transfer through galactic outflows in cosmological model of galaxy formation

- Most of data of high-z LAE matched despite simplistic shell picture
- Lyx and UV properties of galaxies are both well reproduced

In addition, studies in more "realistic" hydrodynamic simulations are important... but quite timeconsuming

Mock LAE fields

Generate light cones (MOMAF, Blaizot+06)

Example:

11-04-2012

- 10 x 10 sq. arcmin
- 3 < z < 3.1
- $F_{Ly\alpha}$ > 10⁻¹⁸ erg/s/cm²

Typical VLT-MUSE field (2013)

suGEM--Swinburne

Clustering of LAEs Are LAEs in the right halos?

Data: Ouchi+10

 θ (arcsec)

- Good match if f = 20-30%

11-04-2012

suGEMo-sSwinburne

Conclusion

- Inclusion of Ly α transfer through galactic outflows in SAM
- Dispersion of f_{esc} -SFR relation => Ly α (non-)emission in LBG
- Most of LAE data matched despite simplistic shell picture
- Some disagreements persist (FWHM, equivalent widths)
- Need for complementary study in hydro. simulations

11-04-2012

suGEMo-sSwinburne

Recombination of HII regions - radiative cascade

Probability(Ly α =1216 A) \approx 2/3 per recombination

11-04-2012

• Intrinsic Ly α luminosity $\mathbf{L}_{\mathrm{Ly}\alpha}^{\mathrm{intr}} \propto \frac{2}{3} \dot{\mathcal{N}}_{\mathrm{ion}}^{\mathrm{OB}} \propto \mathrm{SFR}$ Intense line in star-forming galaxies: $\mathbf{L}_{\mathrm{Ly}\alpha}^{\mathrm{intr}} \approx 10\% \mathbf{L}_{\mathrm{bol}}$

Super Science Symposium - Hobart

37

GALICS – A hybrid model of galaxy formation (Hatton+03)

Super-Science Symposium - Hobart

19-04-2012

Link LAE-LBG

UV luminosity function of LAE

39