The Atomic-to-Molecular Transition in the Milky Way & Beyond

Joanne Dawson (UTas)

Outline

I. Background & Context

- GASKAP: galaxy evolution from the local perspective
- The atomic-molecular transition in galaxies
- Supershells & molecular cloud formation

2. Supershells as Molecular Cloud Factories

- Galactic supershells
- Supergiant shells in the LMC

3. The SPLASH survey

- OH as a tracer of transition-state gas
- Project overview

"Galaxy Evolution Begins at Home"

- Big question in modern astrophysics: How do galaxies form and evolve?
- Much key physics takes place on small scales:
 - Complex & dynamic ISM
 - Star formation & feedback
 - Interaction between disks and halos
- Study this astrophysics in detail here at z=0.
- GASKAP to tackle this through HI and OH (18cm) observations of MW and Magellanic System.

The Atomic-Molecular Transition

- Key GASKAP question: How do molecular clouds form out of the atomic medium?
 - Molecular clouds:
 - Coldest, densest phase of multi-phase ISM
 - Self-gravitating (or at least contain self-gravitating sub-structure)
 - The raw material for star formation
 - Questions:
 - How much of a galaxy can go molecular?
 - What environmental factors will drive it molecular?
 - On what timescales? Where?
 - How does this process proceed physically?

Answers determine how star formation will proceed.

- Ingredients for molecular cloud formation:
 - High density (collisional formation) + High column density (UV-shielding)
- i.e. Gather up and compress material to drive it molecular, e.g.
 - Pile-up in spiral arm shocks
 - Build-up in stellar disk gravity field
 - Infall onto self-gravitating cloud complexes
 - Accumulation in colliding flows
 - etc.

Simulations of molecular cloud formation in spiral arms by Clare Dobbs

Supershells & Molecular Cloud Formation

Top: HI shells in NGC6946A (Brinks et al. 2008) Bottom: N44 superbubble (Gemini Observatory) • Gaseous disks of star forming galaxies are riddled with the footprints of stellar feedback: gas piled up in over-dense shells.

• Supershells: R~100-1000 pc, E~10⁵¹⁻⁵³ erg

Q: Do supershells drive the ISM more molecular?

- Theoretically: Should be possible if conditions are right. Observationally: There are some fairly strong hints.
- But we need:
 - (a) Solid observational proof
 - (b) Numbers! How important is supershelltriggered formation to the molecular gas fraction of a galaxy?

Molecular Cloud Formation in Milky-Way Supershells

Observing the ISM in Supershells

• HI 21 cm line

- Extended, large-scale atomic shell structure.
- Interferometric mosaicing: parsec resolutions over kpc areas. Resolve small-scale structure throughout shell walls.

• ¹²CO(J=I–0) @ 115 GHz

• Pinpoint locations where gas is molecular & link to shell substructure.

GASS (Galactic All-Sky Survey) HI data

Target Objects

	GSH 287+04-17	GSH 277+00+36
Size (pc)	230 × 360	diameter: 610
Dist. (kpc)	2.6 ± 0.4	6.5 ± 0.9
R _{gal} (kpc)	~ 8	~ 10
M(HI) (M₀)	$7 \pm 3 \times 10^{5}$	3 ± × 0 ⁶
$M(H_2)$ (M_{\odot})	$2.0 \pm 0.6 \times 10^{5}$	$2.1 \pm 0.6 \times 10^5$
v _{exp} (km s ⁻¹)	~ 10	~ 20
Age (yr)	~ I 0 ⁷	< 2 × 10 ⁷
Evolution	Young chimney	Evolved chimney

Dawson et al. (2008a, 2008b, 2011), McClure-Griffiths et al. (2003)

GSH 277+00+36

April 18th 2012

Details of the Supershell Walls

April 18th 2012

Details of the Supershell Walls

Enhanced Molecular Fraction

Test for molecular gas formation: compare molecular gas fraction in:

 (a) The volumes of space affected by the shells (including voids!)
 (b) Nearby regions outside their zone of influence

$$egin{aligned} M_{
m H_2} &\propto ~2.0 imes 10^{20} ~\int T_v({
m CO})~dv \ M_{
m HI} &\propto ~1.8 imes 10^{18} ~\int T_v({
m HI})~dv \end{aligned}$$

$$f_{mol} = rac{M_{
m H_2}}{M_{
m HI} + M_{
m H_2}}$$

 Conceptually simple, but challenging in the Galactic Plane. Choose regions carefully...

Enhanced Molecular Fraction

GSH 287+04-17 [f_{mol}]_{shell} = 0.22 ± 0.06 [f_{mol}]_{backgr} = 0.11 ± 0.05 = 2.0 GSH 277+00+36 in-shell enhancement in molecular fraction [f_{mol}]_{shell} = 0.068 ± 0.016 [f_{mol}]_{backgr} = 0.020 ± 0.006 = 3.4

Direct observational support for molecular cloud formation in supershells

Suggests formation of new material > destruction of old If true on large scales has profound implications for role played by supershells in evolution of Galactic ISM.

Molecular Cloud Formation in Supergiant Shells in the LMC

The Large Magellanic Cloud

contours (Fukui et al 1999)

- Nearest star-forming galaxy, *d* ~ 50 kpc
- Nearly face-on → nice target for studying relationship between atomic and molecular clouds
- Excellent CO & HI data available.

CO and HI in the 30 Dor region (Ott et al. 2008)

Supergiant shells in the LMC

Supergiant shells in the LMC

- Compare shell zones with local environments (< 500 pc from inner rim)
 - Majority of systems do show evidence of ISM being more molecular in shell zones than outside.
- Supergiant shells do drive the ISM more molecular, though not the dominant driver.

SPLASH: Probing Transition-State Gas in the Milky Way

Limitations of CO and HI

- To form comprehensive picture, need tracers that follow neutral ISM through all stages of its evolution.
- Shielding requirements for CO: $A_V \gtrsim 1 \rightarrow$ restricted to dense, highlymolecular regions \rightarrow misses diffuse H₂.
- HI and CO alone miss up to 50% of mass in neutral gas complexes! (Grenier et al. 2005, Dawson et al. 2011)
- OH 18 cm lines (1612, 1665, 1667, 1712 MHz) a promising alternative...

Schematic of molecular cloud (Liszt & Lucas 1996)

OH as a Tracer of "Missing" gas

- OH 18 cm emission from diffuse gas is a versatile probe but challenging to observe.
- Versatile:
 - Seen in both emission & absorption
 - ightarrow Directly solve for $T_{
 m ex}$ and au
 - → Potential to resolve near-far distance ambiguity
 - Intensity ratios sensitive to thermal state of gas → diagnose departures from LTE.
- Challenging:
 - Peak $T_b \sim 100 \text{ mK} \rightarrow 10-100 \text{ x}$ weaker than CO!

Astounding Stories of Super Science

SPLASH

- Southern Parkes Large Area Survey in Hydroxl
- Phase I:~1800 hours over 2 years
- Observe Galactic Centre and inner 30 deg of Plane to sensitivity of σ ~ 25 mK
- First fully-sampled large-scale survey in OH
- Order of magnitude more sensitive than previous surveys (needed for diffuse OH)

Astounding Stories of Super Science

SPLASH

• Distribution:

- Scale height?
- Degree of concentration in spiral arms?
- Relative to traditional tracers

• Gas properties:

- Thermal & excitation states...
- Mass, density, column density...
- New map of the
- Deep, unbiasse
- Complemental
 - GASKAP: High resolution, moderate sensitivity, interferometer → OH absorption, masers, resolves out extended structure.

May 2012

Observations commence CASS maser team!)

 SPLASH: Low resolution; high sensitivity; single dish → diffuse, extended emission, provide short-spacing correction for GASKAP

Atomic-molecular transition in Milky Way

Summary

- Transition from atomic to molecular ISM key part of galaxy evolution.
- Evidence that accumulation of ISM in supershells contributes to the production of molecular gas in both the Milky Way and the LMC.
- In LMC, their effect is secondary to other dominant drivers. As yet unknown for the Milky Way.
- The SPLASH survey will seek transition-state gas traced in OH in the Galactic Plane.