

www.csiro.au

Combining Australia and Cambridge surveys to investigate the high-radio-frequency source population

Thomas Franzen

CSIRO Astronomy & Space Science

Presentation at ASoSS in April 2012

Introduction

- 10C survey
 - \circ Source counts
 - \circ Matching with 1.4-GHz surveys
- Spectral-index properties over range of flux densities covered by AT20G, 9C and 10C surveys
- AT20G-deep pilot survey
 - Data analysis
 - \circ First results
- Conclusions and future work

Background

- High-radio-frequency (≥ 10 GHz) sky relatively unexplored
- WMAP survey (Gold et al. 2011) at 23-94 GHz
 - \circ Whole sky complete to ~ 2 Jy
- AT20G survey (Ricci et al. 2004; Sadler et al. 2006; Massardi et al. 2008, 2010; Murphy et al. 2010) carried out using ATCA at 20 GHz
 - \circ Whole southern sky complete to ~ 100 mJy
- 9C survey (Waldram et al. 2003, 2010) carried out using the Ryle Telescope (RT) at 15.2 GHz
 - \circ 520 deg² complete to 25 mJy
 - \circ 115 deg² complete to 10 mJy
 - \circ 29 deg² complete to 5.5 mJy
- 10C survey (Franzen et al. and Davies et al. 2011) carried out using the Arcminute Microkelvin Imager (AMI) Large Array (LA) at 15.7 GHz
 - \circ 27 deg² complete to 1 mJy
 - $_{\odot}$ 12 deg² complete to 0.5 mJy

Background

- High-frequency radio surveys are highly time consuming
 - Interferometer primary beam area: \propto v⁻²
 - Typical synchrotron spectra of radio sources: S ∝ $v^{-0.7}$
 - \circ Hence survey time scales as v^{3.4}
- Play a vital role in characterizing and removing astrophysical foregrounds for CMB experiments
- Provide unbiased view of rare, interesting, classes of sources with flat spectra up to high frequencies blazars, GPS sources

CBI excess

- Using the Cosmic Background Imager at 31 GHz, Sievers et al. (2009) measured a significant excess of power over intrinsic CMB anisotropy at angular multipoles ≥ 2000
- Still not clear whether or not this excess of power is due to incorrect subtraction of extragalactic radio point sources
- 1.4-GHz data were used to characterize the source population at a much higher frequency

Unified scheme for radio-loud AGN

- Based on 2 parent populations: high radio-power FRII galaxies and moderate radio-power FRI galaxies
- Both populations exhibit anisotropic radiation arising from superluminal motion of the radio jets
- In addition, obscuration by a dusty torus contributes to the orientation-dependent appearance of FRIIs
- FRII radio galaxies are the parents of all radio quasars (and some BL Lac-type objects)
- FRI radio galaxies are the parents of BL Lac-type objects

CSIRC

Differential counts at 20 GHz predicted by De Zotti et al. (2005) for classical radio sources

Dotted line: flat-spectrum radio quasars (beamed FRIIs)

Dashed line: flat-spectrum BL Lacs (beamed FRIs)

Triple dot-dashed line: steep-spectrum radio galaxies (unbeamed FRIs and FRIIs) Thin solid line: sum of contributions from 3 pop.

Thick solid line: overall total counts

The AMI LA near Cambridge

- Improved flux sensitivity of the LA, compared with the RT, used to explore the 15-GHz band sky to sub-mJy levels, as part of the 10C survey
- 16 GHz with 4.3-GHz bandwidth
- Resolution ~ 30 arcsec
- Sensitivity ~ 3 mJy in 1 s

10C survey - Matthew Davies, Thomas Franzen, Elizabeth Waldram & AMI Consortium. Astrophysics Group, Cavendish Lab.

- Designed to complement other AMI science programmes, which require knowledge of contaminating radio sources
- Complete to 1 mJy over an area of 27.5 deg² and to 0.5 mJy over an area of 12.0 deg²
- 10 fields distributed more or less uniformly in HA
- 1897 sources detected above 5σ.

Raster map of one of the survey fields

Combined 9C and 10C 15.7-GHz differential source count

Comparison with the 15-GHz de Zotti model

- Model counts by de Zotti et al. (2005) underpredict total number of sources per unit area, over entire flux-density range, by ≈ 30%
- Deficit is attributable to model underestimating count at lowest flux densities

Matching with NVSS catalogue at 1.4 GHz

- Over range of flux densities covered by 10C survey, fraction of steepspectrum sources decreases with decreasing flux density
- Steep-spectrum source defined as α < -0.79 to overcome problem of missing sources in NVSS at low flux density end

Spectra for compact and extended sources in AT20G survey (Chhetri et al. 2012)

- 3403 AT20G sources were followed up with ATCA at 5.5, 9 and 20 GHz
- Sources were classified as compact (< 15") or extended (> 15") by measuring visibility data on 6-km baselines at 20 GHz
- Very strong correlation of compact and extended sources with flat- and steep-spectrum sources respectively
- Maximum value of joint probability that both flat- and steep-spectrum sources are correctly classified is at α = -0.46 and 80% of sources are correctly classified

Joint probability of correctness

Spectral-index shifts as revealed in data from the AT20G, 9C and 10C surveys

Combining Australia and Cambridge surveys to investigate the high-radio-frequency source population

ATESP 5-GHz survey (Prandoni et al. 2006)

- 111 radio sources, complete to ~ 0.4 mJy; find flattening of 1.4-5 GHz spectral index with decreasing flux
- Sources studied by Mignano et al. (2008) in the optical
- Sources responsible for flattening thought to be FRIs with core-dominated radio emission

Green: AGNs

Red: early type spectra; Blue: late type spectra;

Combining Australia and Cambridge surveys to investigate the high-radio-frequency source population

AT20G-deep pilot survey (Elaine Sadler PI)

- Surveyed 2 fields with ATCA at 18-22 GHz in July 2009: CDFS field and SDSS Stripe 82 region.
- Complete to $\approx 2.5 \text{ mJy over } 5 \text{ deg}^2$
- Data now fully analyzed. 85 sources detected > 5σ
- Have good multi-wavelength and spectroscopic data
 ATLAS, NVSS, FIRST, SWIRE, SDSS, AAOmega
- Plan a larger proposal for full AT20G-deep survey (at least 500 deg² down to 5σ detection limit of 1 mJy)

AT20G-deep pilot survey

- Shift in spectral-index properties most rapid in flux density range 1-40 mJy
- New 20-GHz sources detected in AT20G-deep pilot survey fit into exactly this range, and so can help us understand what is driving this rapid change in source population

Survey strategy

- H75 array with 30 arcsec beam at 20 GHz
- Mosaic mode; ≈ 3500 pointings per field; 2 10-s cuts per pointing

Joint versus individual approach when mosaic imaging at 20 GHz

- Individual approach: CLEAN each pointing separately before forming a mosaic
- Joint approach: CLEAN mosaiced image
- Joint approach gives significantly higher dynamic range

Joint approach

Individual approach

Completeness

 Monte Carlo simulations show that the survey completeness can be accurately quantified by use of the noise map and simple Gaussian statistics

CSIRO

Matching with catalogues at 1.4 GHz

Comparison with S-cubed semi-empirical simulations (Wilman et al. 2008)

- Get all galaxies with S_{18 GHz} > 2.5 mJy in central 5-deg² of simulation; find a total of 62 galaxies
- In comparison, 60 sources > 2.5 mJy are detected in AT20G-deep pilot survey over same area of sky
- However, spectral index distributions are remarkably different, implying that the models need refining
- This comparison highlights the need for large samples of highfrequency radio sources

Conclusions

- Find a rapid and puzzling shift in the 15/20-GHz source population over the flux density range 1-40 mJy
- The typical spectral index becomes steeper for sources with decreasing flux densities above ~ 5-10 mJy; at fainter flux densities, this trend is reversed, with a move back toward a flatter spectrum population
- Pilot observations for AT20G-deep survey successful; 85 sources detected > 5σ , 45% of which have flat or rising spectra.
- Compared AT20G-deep pilot survey with S-cubed semiempirical simulations; spectral index distributions found to be remarkably different

Future work

- Before starting to plan a larger proposal for the full AT20Gdeep survey, need to understand more about the source population seen in the pilot survey
- Will follow up sources with ATCA at 5.5, 9 and 20 GHz

 Measure variability in flux density over 3-year timescale
 Obtain angular size information from 6-km visibility data
 Investigate spectral curvature between 1.4 and 20 GHz
 - $_{\odot}$ Verify reliability of AT20G-deep catalogue
- Will combine the new radio data with optical imaging and spectroscopic data where available, with the aim of identifying the source population responsible for the rapid spectral-index shifts seen between 1 and 40 mJy

Email: <u>Thomas.Franzen@csiro.au</u>

Thanks to Matthew Davies, Liz Waldram, Richard Saunders, Ray Norris, Elaine Sadler, Liz Mahony and Ron Ekers

Thank you

ww.csiro.au

Combining Australia and Cambridge surveys to investigate the high-radio-frequency source population

Flat- and steep-spectrum source counts

CSIRO. The AT20G-deep pilot survey: Investigating the faint high-radio-frequency source population