The AuScope VLBI Array

Jim Lovell, Jamie McCallum, Lucia Plank, Elizaveta Rastorgueva-Foi, Stas Shabala : University of Tasmania

David Mayer, Johannes Böhm : Technical University of Vienna

Oleg Titov : Geoscience Australia

Jonathan Quick : Hartebeesthoek Radio Astronomy Observatory

Stuart Weston, Sergei Gulyaev, Tim Natusch : Auckland University of Technology

Cormac Reynolds, Hayley Bignall : Curtin University

Jing Sun : Shanghai Astronomical Observatory

Alexander Neidhardt : Technical University of Munich

AuScope VLBI Array: 2010 - 2015

- 3 x 12m telescopes. Small, fast
- Room temperature SX, 3500 Jy
- DBBC2, Mark5B+
- $\hfill \cdot$ Operations centre at UTAS
- Correlation at Curtin Uni (WA) until Sep 2015
- \bullet Scheduling and analysis capability in collaboration with TUW

The AUSTRAL Program 2013 - 2015

- As well as regular IVS observations (~100 days per year), 120 days per year AUSTRAL from 7/2104 to 6/2015
- AuScope (100%) + Warkworth (50%) + Hart15 (50%)
- Aims
 - 11 days of astrometry to monitor and enhance the southern hemisphere celestial reference frame (~6 sessions including Parkes 64m);
 - 184 days of geodesy to improve the southern hemisphere terrestrial reference frame and the baseline time series;
 - 2 x 15-day CONT-like sessions to densify the time series and investigate a range of observing strategies.

- 6 sessions changed to AOV for regional geodesy and astrometry (Poster P2-02)
- Scheduling in ViEVS
- 1 Gbps data rates (4 x R1/R4 rates)
- Correlation at Curtin
- Analysis at UTAS

The Challenges of VGOS

- Continuous operations
- Centralised remote operations
- Broad bandwidths and high data rates
- Fast data turnaround
- Feedback:
 - Closing the loop from scheduling to analysis to scheduling
 - During observations: Dynamic observing
- How best to use twin telescopes

AuScope and the AUSTRAL program can address some of the challenges

- We don't have:
 - Broadband systems yet
 - Fast networks to all antennas, so no fast turnaround
 - Enough funds for 24/7 operations.
- But we do have:
 - Small, fast antennas
 - Funding for ~60% of continuous operations
 - An operations centre
 - DBBCs and Mark5B+ : high-ish data rates
 - Twin sibling telescopes

VGOS

- Centralised remote operations
- Continuous operations
- Broad bandwidths and high data rates
- Fast data turnaround
- Feedback
- Twin telescopes

Centralised Remote Operations

Remote Operations

- All AuScope antennas and Parkes are remotely operated. Monitor Ht, Ww
- ERemoteCtrl (Wettzel)
- MONICA (CSIRO)
- PCFS (NASA)
- jive5ab (JIVE)

Continuous Operations

We're Busy

Dense time-series

- Identify systematics, trends on shorter timesc ales
- Comparison of GNSS and VLBI

Ke-Yg:2360367.228m

Broad bandwidths, high data rates

- AUST data rates are currently 1 Gbps (16 MHz IFs, 2 bit). compensates for higher SEFD of small antennas with room temperature SX systems.
- 2 Gbps is also possible

Feedback

Post-session feedback: Scheduling Optimisations Scheduling strategy changed after AUST30. Stronger sources and algorithm changes gave a 2 x increase in

From Plank et al 2015. , IAG Symposia (REFAG), accepted

Intra-session optimisations: Dynamic Observing

- We schedule VLBI observations in the same way we did 30 years ago. Antennas, correlators are scheduled the year before, schedule files produced a week before. Inflexible!
- 80% of the data are kept for R1/R4 sessions. Losses due to station problems/failures.
- We can do better!
- Dynamic observing:
 - Feedback from telescopes and correlator in real-time to optimise schedule on-the-fly
 - Requires centralised operation of array, good networks etc.

- Advantages in re-scheduling in real time (real data):
 - Effectively a simulation of an antenna with poorer than expected sensitivity

Scenario)	Number)of)scans)	Number)of) observa1ons)	Number)of)successful) Hb)observa1ons)	%)successful)Hb) observa1ons)
Observed(as(scheduled(804(1498(394(100(
Current:(Don't(reschedule(652(1190(86(22(
Dynamic(Observing:(reschedule(793(1470(357(91(

Source structure feedback

- Source structure mitigation strategies.
 - Stas' talk tomorrow

Twins

• See Lucia's talk tomorrow

We need to upgrade to VGOS

• All southern stations need to upgrade, and we need more southern stations. If not, the northsouth imbalance will be back.

VGOS simulation (D. Mayer, L. Plank)

VGOS simulation (D. Mayer, L. Plank)

What Next for AuScope?

- Bringing AuScope closer to VGOS
- Broadband upgrade to 3 AuScope telescopes. Callisto feeds, new DBBC3 systems, Mark6 or Flexbuf
- Trial source structure mitigation strategies.
 - Avoid/flag scans when a baseline resolves the jet
 - Sidereal scheduling trials
 - Variability monitoring (feedback)
- Implement and test some DO ideas
- Further scheduling optimisation tests with ViEVS and eRemoteCtrl
- Trial shared operations
- AUSTRAL is back, 12 per year, SHAO correlation, Thanks!
- More twin (sibling) telescope trials with Hobart 12m and 26m

What the AOV can do

- Many of our sites have good network connectivity:
 - Share operations and monitoring. This could be tested using eRemoteCtrl
 - Fringe-checking prior to AOV sessions. Schedule for tests the day before
 - Fringe-checking during other IVS sessions. Need minor VEX file changes and a willing correlator
 - GSI (for example) has great experience in real-time correlation and analysis (ultra-rapid EOP). Let's make it routine!
 - AuScope array can try out dynamic scheduling strategies
 - Can we fully-automate stations using legacy systems?
 - When antennas are free, run a continuous real-time, observing program.
 - Similar to the NICT Key Stone Project (1995 2001, ksp.nict.go.jp) maybe, but international

